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The boundary-element method is used to solve Stokes equations for periodic arrays 
of force-free and torque-free rigid particles. Simple cubic arrays of spheres, spheroids, 
cubes, and clusters of spheres are subjected to a bulk simple shearing flow. The 
effective volume-averaged stress tensor for the suspension and the detailed velocity 
and stress fields throughout the Newtonian suspending fluid are calculated. We find 
that even crude meshes give very good volume-averaged results, but fine meshes are 
required to track local minima and maxima in the stress field. For simple cubic 
arrays of spheres, the boundary-element results are in excellent agreement with the 
analytical viscosity predictions of Nunan & Keller (1984). Even at the highest 
concentration of solids studied, no significant normal stress differences were observed, 
in agreement with Nunan & Keller's results (1984). Up to moderate concentrations 
of particles, the volume-averaged properties of the suspension display only a weak 
dependence on the particle geometry. Suspensions of spheroids and cubes behave 
approximately as suspensions of spheres on the average despite large differences in 
the local micromechanics of stress and velocity fields. Simple cubic arrays of clusters 
of spheres tend to behave on a macroscopic level as a cubic array of spheres whose 
effective volume fraction is about 150 YO of the total volume fraction of the spheres in 
the clusters. 

1. Introduction 
A central difficulty in understanding the mechanics of suspensions is the lack of 

knowledge concerning the hydrodynamic interaction of multiple particles suspended 
in a Newtonian fluid. The ultimate goal is the calculation of the effective transport 
properties of the bulk material considered as homogeneous on a macroscopic scale. 
Theoretical attempts to determine these effective transport properties have been 
successful in the limit of dilute systems (e.g. Batchelor 1970). In the systems of most 
practical interest, the least information is available. 

In all existing theories of suspensions (e.g. Batchelor 1970, 1982 ; Jeffrey & Acrivos 
1976; Herczynski & Pienkowska 1980; Brenner, Nadim & Haber 1987), the inter- 
particle interaction is the essential ingredient. In a series of papers, Brenner (1963, 
1964 u-c) systematically analysed the problem of Stokes resistance of an arbitrary 
particle and showed that the hydrodynamic force and torque acting on such a 
particle can be expressed in terms of its translational and angular velocities, and the 
arbitrary imposed Stokes flow via the resistance functions (coefficients). Brenner & 



276 N .  Phan-Thien, T .  Tran-Cong and A .  L.  Graham 

O’Neill(l972) later generalized the results for a multiparticle system in a linear shear 
flow and defined the grand resistance matrix of the system. 

Although the mathematical analyses mentioned above furnished a great deal of 
information concerning the dynamics of a multiparticle system, some detailed 
calculations and numerical values for the resistance functions (Brenner & O’Neill 
1972) or the mobility functions defined by Batchelor (1976) were completed only 
recently. Kim & Mifflin (1985) considered two spheres of equal size in an arbitrary 
uniform rate-of-strain field. Two spheres of unequal sizes in a uniform field plus a 
superposed rigid-body motion were studied by Jeffrey & Onishi (1984). Kim (1987) 
reported an analytic solution for the Stokes flow problem past three equal spheres 
fixed a t  the vertices of an equilateral triangle. 

Ganatos, Pfeffer & Weinbaum (1978) extended the collocation technique developed 
by Gluckman, Pfeffer & Weinbaum (1971) and Leichtberg et al. (1976a-b) and solved 
for the motion of a large number of interacting spheres lying in a plane. Bloomfield, 
Dalton & Holde (1967) proposed a shell model whereby a particle is modelled by an 
assembly of identical spherical elements, distributed on a surface shell derived from 
the shape of the particle. McCammon & Deutch (1976) computed the Stokes drag on 
a particle by solving a set of linear algebraic equations of the Kirkwood-Riseman 
type (Kirkwood & Riseman 1948). Subsequent development along this line, by 
Swanson, Teller & HaEn (1978), Roger & Hussey (1982), gave rise to the so-called 
beads-on-a-shell method. The problem involving more than two spheres in an 
arbitrary configuration was treated by Kynch (1959) and Mazur & van Saarloos 
(1982) using a power series expansion in R-l, where R is a typical particle spacing. 
Beenakker (1984) used these results to study the effective viscosity of a concentrated 
suspension of spheres, taking into account the multiparticle hydrodynamic 
interaction. 

Recently Durlofsky, Brady & Bossis (1987) and Brady & Bossis (1988) developed 
a very efficient technique termed the Stokesian Dynamics method for modelling a 
cluster of spherical particles in an arbitrary Stokes flow. The method involves adding 
the inverse of the far-field mobility matrix of two sphere interactions to the 
resistance matrix of two sphere lubrication resistance functions and solving the 
resulting equations. Although the method is approximate, the results obtained so far 
have proved to  be accurate and useful in elucidating several mechanisms a t  work in 
flows of suspensions. The method is, however, designed for spheres since the far-field 
and near-field resistance functions are available for spheres only. 

An infinite number of spheres arranged periodically can be treated analytically 
(Zick & Homsy 1982 ; Nunan & Keller 1984 ; Adler, Zuzovsky & Brenner 1985 ; Brady 
et al. 1988). Nunan & Keller (1984) showed that the deviatoric average stress in a 
periodic suspension is linear in the average strain rate. On average, the fluid is 
anisotropic with a fourth-order tensorial effective viscosity, which is related to  the 
lattice geometry and the volume fraction via two scalar functions, u and p. 
Asymptotic formulae as well as numerical values for u and /3 were given for a number 
of lattices. The numerical method is based on solving a set of integral equations that 
were derived by using a periodic singularity solution of Hasimoto (1959). The method 
is therefore a boundary-integral-equation method (see, for examples, Banerjee & 
Butterfield 1981 ; Brebbia, Telles & Wrobel 1984), except that the kernel used in 
these integral equations is quite complicated and involves a lattice sum. Nunan & 
Keller (1984) adopted a Galerkin method used by Zick & Homsy (1982) for solving 
the resulting set of integral equations, and they were able to obtain numerical results 
up to 90 % of maximum volume fraction. Their numerical results agree well with the 
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asymptotic results at low volume fractions (Adler et al. 1985) and their own 
asymptotic results at high volume fractions. Brady et al. (1988) adapted the 
Stokesian Dynamics method to simulate the flow of an infinite suspension of 
hydrodynamically interacting spheres. The method yields excellent results when 
compared to the exact solutions of Saffman (1973), Zick & Homsy (1982), and Nunan 
& Keller (1984) for the sedimentation, permeability, and viscosity problems of 
periodic suspensions. In particular for the viscosity problem, their method reproduces 
the exact behaviour at  high volume fractions. The Stokesian Dynamics method is 
undoubtedly the best available method for simulating an infinite suspension of 
spheres. 

The use of the boundary-integral-equation method, or boundary-element method 
(BEM) in solving Stokes problems was first reported by Gluckman, Weinbaum & 
Pfeffer (1972) for an arbitrary convex body of revolution, and by Youngren & 
Acrivos (1975) for an arbitrary rigid particle. The distinctive advantage of the 
method over traditional methods, such as finite difference and finite element, is a 
reduction of dimensionality afforded by converting the original set of three- 
dimensional partial differential equations into a set of integral equations defined on 
the boundary of the solution domain. The resulting system matrix, although fully 
populated, is usually small in size compared to corresponding systems generated by 
the finite-difference or finite-element methods. The BEM has been successfully 
employed in solving a number of three-dimensional Stokes flow problems. These 
include the swimming of spermatozoa (Phan-Thien, Tran-Cong & Ramia 1987), the 
sedimentation of spheroidal particles near a planar interface (Tran-Cong & Phan- 
Thien 1989), the flow between two parallel plates past a two-dimensional periodic 
array of force-free and torque-free spheroids (Tran-Cong, Phan-Thien & Graham 
1990), the flow of a cluster of spheres in a cylinder (Ingber, Mondy & Graham 1989), 
the extrusion problem for Newtonian (Bush & Phan-Thien 1984 ; Tran-Cong & Phan- 
Thien 1988a) and viscoelastic fluids (Tran-Cong & Phan-Thien 1988b), and the three- 
dimensional die-design problem (Tran-Cong & Phan-Thien 1988 c). 

In this paper we extend the BEM to simple shearing flow of a three-dimensional 
periodic array of force- and torque-free particles. The BEM cannot compete with the 
Stokesian Dynamics method (Durlofsky et al. 1987; Brady & Bossis 1988; Brady et 
al. 1988) in terms of efficiency, but it is general and can be applied to a system of non- 
spherical particles of different sizes and shapes. Furthermore, the detailed kinematics 
and stress field can be readily obtained by a post-processing of the boundary 
solution. The method is benchmarked against the numerical and asymptotic results 
of Nunan & Keller (1984) and new results for periodic arrays of spheroids, cubes, and 
clusters of spheres are reported. It is found that the BEM results agree well with the 
numerical results of Nunan & Keller (1984). The instantaneous effective viscosity is 
only weakly dependent on the particle shape at volume fraction not near to the 
maximum packing. We find that the instantaneous viscosity of some periodic arrays 
of clusters of spheres is about the same as the instantaneous viscosity of a cubic array 
of spheres provided that the volume fraction @ of the clusters is replaced by an 
effective volume fraction Geff x 1.5@. This is essentially Roscoe’s conclusion (1952), 
although the empirical relation reported was GePP x @/amax, where Gmax is the 
maximum volume fraction for the type of packing assumed in the cluster; 1/amax 
ranges from 1.35 for a face-centred cubic packing to 1.47 for a body-centred cubic 
packing, and to 1.91 for a simple cubic packing. 



278 N .  Phan-Thien, T.  Tran-Cong and A .  L. Graham 

2. Basic equations 
We consider a set of rigid, neutrally buoyant particles arranged periodically in a 

three-dimensional lattice. The particles are suspended in a Newtonian fluid of 
viscosity 7 and undergoing a bulk simple shearing flow in the zz-plane. The flow is 
assumed to be isothermal and without body forces so that in the region E containing 
the fluid, the pressure P ,  the velocity u, and the stress tensor a satisfy the Stokes 
equations. 

Owing to the periodicity of the solution, it is sufficient to consider a unit cell 
determined by the basis vectors {a,}, i = 1 , 2 ,  3. Periodicity conditions are imposed 
on any multiple of a linear combination of the basis vectors. More precisely, if 
f' = a,a,+a,a,+a,a,, where a, can be any integer, then the following boundary 
condition is imposed : 

I n  ( l ) ,  i )  is the bulk velocity gradient tensor applied to the flow (Batchelor 1970). I n  
this paper we are only concerned with a bulk simple shearing flow and the only non- 
zero component of y is 3j1, = 3j, i.e. the bulk shearing flow takes place in the zz-plane. 
The bulk shear rate 3j is normalized to unity. 

I n  addition, the particles in a unit cell are free to move, subjected to the force- and 
torque-free conditions. We are concerned with the mobility problem, and finding the 
translational and the angular velocities of particle i ,  and a,, respectively, is part 
of the solution procedure. 

The problem is now well-posed, and analytic solution is possible for some simple 
lattices (Nunan & Keller 1984). Our numerical scheme deals with the unit cell 
directly and therefore some relevant boundary conditions for the t'raction vector are 
needed on the surface of the unit cell (these are not required in the analytic solution). 
The periodicity of the fluctuating velocity and the pressure fields (there is no intrinsic 
pressure gradient in this problem) implies that the fluctuating stress tensor is also 
periodic : 

u(x+f') = U(X)+i).f'. (1) 

a(x+f') = a(x)+q(i)+i)t). (2) 

The constraint on the traction vector on the boundary of the unit cell, t = n -a, 
where n is the outward unit vector on the bounding surface of the unit cell, can be 
easily derived from the periodicity of the fluctuating stress tensor and the geometry 
of the unit cell. 

Suppose that the fluid motion has been found. Then, as shown by Batchelor (1970), 
the volume-averaged stress tensor is given by 

<a> = - < n 1 + 7 ( Y + i ) T ) + 7 ,  (3) 

where the angular brackets denote a volume average and 7 is the effective stress 
contributed by the particles at the instant considered. It is given by 

Here V is the volume of the periodic cell, taken as a representative volume, S is the 
bounding surface of V ,  which includes the bounding surfaces of all particles 
contained in V ,  and 1 is the unit tensor. 

The determination of the effective properties of the suspension entails solving the 
boundary-value problem for the microstructure and calculating relevant ensemble 
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averages over all possible configurations of the particles. Here, only one possible 
configuration of the particles is considered and therefore we refer to the volume- 
averaged properties as instantaneous effective, or simply effective, properties. Thus 
the instantaneous reduced viscosity of the periodic suspension can be defined as 

The governing equations are recast in integral form using the standard Stokeslet 
singular solution (see, for examples Banerjee & Butterfield 1981, or Brebbia et al. 
1984). It is possible to use a special periodic singular solution derived by Hasimoto 
(1959) and therefore satisfy the periodic boundary conditions exactly. However, the 
periodic kernel depends on a lattice sum and is less flexible for our purposes. 

With velocity boundary conditions the resulting integral equations are of the first 
kind in terms of the boundary tractions. This can lead to an ill-conditioned algebraic 
system upon discretization. The cause of the ill-condition problem has been clearly 
expounded by Karrila & Kim (1990) for spheres. They find that the high spatial 
frequency inputs in the traction vector of the form V,PF (cos 0)  eim4, where V, is the 
surface gradient and PF is the associate Legendre polynomial, are mapped to small 
outputs which vanish as O(n-'). The inverse problem of finding the inputs 
(traction) knowing the outputs is therefore ill-conditioned. Karrila & Kim (1990) 
prefer an indirect integral formulation which they termed the Completed Double 
Layer Boundary Integral Equation Method, which always results in a set of integral 
equations of the second kind. 

Despite these negative remarks on the ill-conditioned problem of the standard 
BEM for the case where boundary velocities are prescribed, we find that a good 
quality solution can be obtained for a system of particles in Stokes flow provided that 
the number of boundary elements is not large (less than about lo3). The total number 
of elements is usually set by the physical amount of memory in the computer rather 
than the ill-posedness of the problem ; one usually obtains a good quality solution 
before the ill-conditioned problem sets in (Tran-Cong et al. 1990). 

A numerical implementation of the set of integral equations was reported in Tran- 
Cong et al. (1990). In this periodic-flow problem neither the boundary traction nor 
the velocity vectors are known on the boundary aE. On the boundary of the unit cell, 
however, they are related by the imposed periodic boundary conditions. These 
boundary conditions provide 6N equations, where N is the number of elements on the 
surface of the unit cell, which are also imposed. The force- and torque-free conditions 
can now be used to solve for the translational and angular velocities of each particle 
in the unit cell. The global traction vector, the velocity, the stress fields and the 
effective stress tensor contributed by the particles can then be evaluated. 

3. Results and discussion 
3.1. Single particle 

The program is first tested with a single sphere (of radius a = 1)  sedimenting along 
the z-direction in an unbounded body of fluid. Integral properties (force and torque 
on the particle for the resistant problem, and sedimentation velocity for the mobility 
problem) are predicted accurately with a crude mesh. We subjected the program to 
a stricter test of point-wise values of the velocity and the stress fields. With an 80- 
element sphere, the point-wise error in the kinematics is less than 3 YO, and the point- 
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wise error in the stress field is less than 11 Yo, up to a distance of 10 radii from the 
sphere. The point-wise error in the kinematics is reduced to within 0.8% when a 320- 
element sphere is used. The maximum point-wise error in the stress field, however, 
is still of the order 8 YO. The maximum error in arr occurs a t  the poles, at a distance 
of about 1.2 a from the sphere centre, where arr attains its local maximum. The slow 
decay of the error in the stress field is due to the fact that the kernels involved in the 
integral equations for the stresses are more singular than the Stokeslet (they are the 
gradients of the Stokeslet). Integral properties are predicted accurately, to within 
3% for an 80-element sphere. 

If the problem can be assumed axi-symmetric, and the corresponding axi- 
symmetric kernels are used in the calculation, then the rate of convergence to  the 
Stokes solution is more than quadratic in the number of elements, as table 1 shows. 
The rate of convergence to the Stokes solution is somewhat less than linear in the 
number of elements in the full three-dimensional problem. We also present some 
results for the axi-symmetric flow perpendicular to an oblate spheroid of aspect ratio 
1000, and parallel to a prolate spheroid of aspect ratio 1000. Compared to the exact 
solution (Happel & Brenner 1973), the rate of convergence is about quadratic for 
these cases. 

The pressure field on the sphere surface is also predicted accurately. With an 80- 
element sphere the error on the maximum pressure on the sphere surface (which 
occurs at the poles) is about 6%. This reduces to less than 1 % with a 320-element 
sphere. The program has also been tested with more than one particle in an 
unbounded body of fluid, and near a planar interface (Tran-Cong & Phan-Thien 
1989). The numerical results compare well with all available analytical solutions. It 
should be noted that in the sedimentation problem, our integral equation formulation 
leads to a set of integral equations of the first kind. An ill-conditioned problem will 
arise if the total number of elements is too large (of the order lo3) when the particles 
are touching. The maximum number of elements used in this paper is 780, in the case 
of a periodic array of a cluster of six spheres. Within this constraint, however, we are 
still able to  cover a range of volume fraction of interest and produce good quality 
numerical solutions. 

3.2. Cubic array of spheres 
We now consider the bulk shearing flow past a cubic array of force- and torque-free 
spheres. The problem has been considered by Nunan & Keller (1984) who showed 
that the effective stress contributed by the particle is linear in the bulk strain rate. 
The instantaneous effective viscosity is a fourth-order tensor which depends on two 
scalar functions of the volume fraction and the lattice geometry. The effective 
volume-averaged constitutive equation takes the form 

7ij = T ( l  + P ) ( ? i j f ? j i ) + T ( a - P )  ' i j k l ( ? k l + ? l k ) ,  

where diIJkl is unity if all the subscripts are equal and zero otherwise, and a and are 
functions of the concentration and the lattice geometry (Nunan & Keller 1984). The 
bulk suspension is therefore anisotropic. In the bulk shearing flow considered here, 
the instantaneous reduced viscosity is given by 

x&= 1+p, 
TY 

and the normal stress differences (Nl = (azz-ac5) and N, = (rZz -agg)) are zero. In  a 
bulk elongational flow, the elongational viscosity is T (  1 +a). 
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N 
20 
30 
40 
50 
60 
72 
90 

120 
180 
240 
300 
360 
500 
720 

Sphere 

DID, Error 
0.99747 0.253 
0.99887 0.113 
0.99935 0.0650 
0.99957 0.0427 
0.99970 0.0305 
0.99980 0.0197 
0.99987 0.0126 
0.99993 0.007 12 
0.99997 0.003 17 
0.99998 0.001 79 
0.99999 0.001 14 
0.99999 0.000786 
1.00000 4.10 x lo-’ 
1.00000 1.94 x lo-’ 

Oblate 

DIDO Error 

0.51080 0.489 

0.66337 0.337 

0.90335 0.0966 

0.98780 0.0122 
0.99581 0.00419 
0.99966 0.000337 
1.00002 1.94 x 10-5 

Prolate 

DIDO Error 

0.57570 0.424 

0.84888 0.151 

1.01106 0.0111 

1.01361 0.0136 
1.00855 0.00855 
1.00292 0.00292 
1.00086 0.000857 

TABLE 1 .  Stokes flow past a sphere, perpendicular to an oblate spheroid, and parallel to a prolate 
spheroid (both of aspect ratio 1000) in an unbounded body of fluid. D/Do is the normalized Stokes 
drag (to five significant digits), which should be exactly one, and N is the total number of constant 
elements. 

Numerical values for /3 and a are given for a number of simple lattices in Nunan 
& Keller (1984). Asymptotic results at low and high volume concentrations are also 
given. In  particular, at high volume fraction and for a simple cubic lattice, they 
showed that 

/3=~7tl1ne-~+0.63+0(e), (7) 

where e = 1 - (@/Gmax)i; G and Gmax are the volume fraction and the maximum 
volume fraction, respectively. For a simple cubic array, Gmax = k7t. We find that the 
asymptotic result (7) does not agree with Nunan & Keller’s numerical result even 
though their figure 2 shows that the two overlap in the region where the volume 
fraction is of the order 0.3. For example, at a volume fraction of 0.28, (7) gives /3 = 
1.94, whereas Nunan & Keller’s numerical result is 0.744. Without checking their 
asymptotic results in detail, we think that the term +0.63 in (7) should be -0.63 
which in the above example would produce /3 = 0.68, which is indistinguishable from 
their results shown on their figure 2. This corrected asymptotic relation will be used 
in the comparison with our numerical results. 

The number of elements on the bounding surface of the unit cell is varied from 40 
to 300, and the number of elements on the sphere is varied between 20 and 320 to  
gauge the convergence of the numerical solution. It is found that integral properties 
(i.e. instantaneous effective viscosity) are rather insensitive to the number of 
elements used. For volume fractions less than 0.45, a 20-element sphere in a 300- 
element unit cell produces results in excellent agreement with Nunan & Keller’s 
numerical and asymptotic solutions. This is shown in figure 1. With an 80-element 
sphere in a 300-element unit cell, the instantaneous effective viscosity is within 0.9% 
of Nunan & Keller’s asymptotic result a t  a volume fraction of 0.45 (Nunan & Keller 
only reported numerical results up to a volume fraction of 0.28). At high volume 
fractions (> 0.45), more elemcnts are needed on the sphere for convergence. It is 
found that a 320-element sphere in a 300-element unit cell can produce results in 
excellent agreement with the asymptotic formula, up to a volume fraction of 0.50, 
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FIGURE 1. The reduced instantaneous viscosity (x) as a function of the volume fraction. Excellent 
agreement with the numerical and asymptotic results of Nunan & Keller (1984) is noted. At a 
volume fraction of 0.505, which is about 96% of the maximum volume fraction, the reduced 
instantaneous viscosity predicted with a 320-element sphere in a 300-element unit cell is 3.87, 
which is 0.9% higher than the (corrected) asymptotic result of Nunan & Keller (1984). 0, 20- 
element sphere ; A, 80-element sphere ; x , 160-element sphere ; V, 320-element sphere ; + , Nunan 
& Keller (1984) results. 

which is 95 % of the close-packing concentration. At this volume fraction, the sphere 
is only 0.02 radius away from the wall of the unit cell. The ill-conditioned problem 
does not seem to affect the quality of the integral properties. 

At low volume fractions, there are several asymptotic results, up to O ( @ )  due to  
Zuzovsky (1976) and Zuzovsky, Adler & Brenner (1983). Our results agree well with 
those results up to  a volume fraction of about 0.25. Einstein's result, 

x = 1+2.5@, (8) 
works surprisingly well for volume fractions less than 0.25 (figure 1 ) ;  the maximum 
error (compared to  the numerical solution and Nunan & Keller's results) is less than 
1 % a t  @ = 0.25. 

Nunan & Keller (1984) showed that the angular velocity of the sphere is exactly 
half of the curl of the average velocity, independence of the volume fraction (half, in 
this case, because the shear rate is normalized to unit). This is the same angular 
velocity that would be exhibited by a single sphere in an unbounded body of fluid 
subjected to the same volume-averaged strain rate. That is, each sphere in the cubic 
array spins as if other spheres were not there. For an 80-element sphere in a 300- 
element unit cell, we find that the sphere spins a t  an angular velocity in the range 
0.4984.502, which is about 0.4% from the exact value, for the whole range of volume 
fractions considered. 

The detailed kinematics and stress field can be easily post-processed in the BEM. 
The surface contours of the velocity field show that the flow takes place mainly in the 
xz-plane, with the magnitude of the y-component of the velocity of the order or 
less everywhere. The surface contours of the pressure and the stresses show that high- 
stress regions are found on the surface of the unit cell, near the poles. We find from 
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FIGURE 2. The velocity profile (u,) along the z-axis for three consecutive periodic cells at @ = 0.058. 
The dashed line is the unperturbed shear flow. 

the contours of velocities in the flow domain that the flow is mainly in the zz-plane, 
with no recirculation region in the unit cell. 

The velocity component u, along the z-axis along three neighbouring periodic cells 
are reconstructed in figure 2. The undisturbed shear flow (u, = z )  is also plotted in 
the same figure as a dashed line for comparison. The deviation from the undisturbed 
shear flow occurs periodically, with the maximum deviation occurring at the spheres’ 
surfaces. This maximum deviation is exactly 0.5 a?, since the spheres rotate with the 
same angular velocity of 0.5 p. The odd symmetry of u, with respect to = z/a is 
evident in the figure and is due to the symmetry in the Stokes equations and the 
boundary conditions. 

At  all volume fractions considered, the effective normal stress differences are found 
to be negligible, being of the order of the effective shear stress. This agrees with 
Nunan & Keller’s solution. 

Tran-Cong et al. (1990) considered a shear flow of a two-dimensional periodic array 
of three-dimensional spheres (in the x- and y-directions) but with only a finite 
number of layers between the containing walls. It is of interest to find out the number 
of layers of spheres that one needs to approximate a cubic array of spheres in all three 
directions. This can be determined by first calculating the effective viscosity of a 
mono-layer of spheres undergoing a simple shearing flow between two parallel plates. 
The number of layers can then be increased, keeping the volume fraction fixed until 
the effective viscosity converges to a definite value. All the spheres were included in 
the calculation of the particle contribution to the effective viscosity. We find that the 
instantaneous effective viscosity is about 2 ‘YO greater than the three-dimensional 
cubic array’s result for five layers of spheres. The five spheres in the unit cell do not 
contribute equally to the effective viscosity. The centre sphere behaves as if it was 
part of a lattice of infinite extent ; the spheres in the intermediate and the bordering 
layers contribute relatively more (up to 1 YO more) to the effective viscosity than the 
centre sphere. Thus, in an integral sense, a sphere in a cubic array can only see about 
two nearest neighbours. This is a direct numerical confirmation of the shielding 
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principle to which Stokesian Dynamics simulation (Brady & Bossis 1988; Brady et 
al. 1988; Durlofsky et aZ. 1987) owes much of its success. 

We have established in this section that the standard BEM can be applied to  a 
periodic Stokes flow problem, giving excellent results in the case of the flow past a 
cubic array of force- and torque-free spheres. The computational cost is not high, 
considering that we use a standard Gauss elimination to solve the resulting system 
of equation. A problem with 700 elements takes about 10 min to solve on a Cray- 
XMP, or about 200 min on a MIPS-120 workstation. 

3.3. Cubic array of spheroids 
We now consider a cubic array of prolate and oblate spheroids. The aspect ratio 
(ratio of major to minor radius) is chosen to be two. Three different orientations of 
the spheroids are considered : 

aligned in the x-direction : the major (minor) axis of the prolate (oblate) spheroid 

aligned in the y-direction : the major (minor) axis of the prolate (oblate) spheroid 

aligned in the z-direction : the major (minor) axis of the prolate (oblate) spheroid 

In all cases the bulk shear flow takes place in the xz-plane with an average shear rate 
of 1 ,  and the unit cellis the cubeE = {x,y,z: -h < x < h, - h  < y < h, -h < z < h). 

A mesh refinement study indicates that one needs only 80 elements on the spheroid 
in a 300-element unit cell to obtain good average results up to a volume fraction of 
90% of the close packing concentration (for prolate spheroids of aspect ratio 2 this 
is &r, and for oblate spheroids of the same aspect ratio, i t  is &n). 

The general form of the particle-contributed for a dilute suspension of spheroids 
was given by Batchelor (1970). Thus, 

is pointing in the x-direction ; 

is pointing in the y-direction ; 

is pointing in the z-direction. 

I 4 
1 2  

+ @p + gl)D :pp + - @p.D + D-pp - 2 0  :pppp) , (9) 

where p is a unit vector parallel to the axis of revolution of the spheroid, D is the 
strain rate tensor, and I t ,  Ji are integrals that  depend only on the shape of the 
spheroid; they are defined in Batchelor (1970). At an aspect ratio of 2, these integrals 
can be evaluated, leading to an effective reduced viscosity of 1 + 2.504@, for prolate 
spheroids aligned in the x- and z-direction, 1 +2.174@, for prolate spheroids aligned 
in the y-direction, 1 + 2.063@, for oblate spheroids aligned in the x- and z-direction, 
and 1 + 3.267@, for oblate spheroids aligned in the y-direction. Note that the effective 
viscosity of suspensions of spheroids aligned in the x- and in the z-direction is the 
same. This follows from the fact that the rate of strain tensor is the same in both 
cases, apart from a trivial rigid rotation, after a suitable change of frame. 

The main results for prolate spheroids are summarized in figure 3, where the 
instantaneous effective viscosity and the particle angular velocity are plotted against 
the reduced volume fraction (@/@,,,J. We find that the effective viscosity of 
suspensions of spheroids aligned in the x- and z-direction is the same to three 
significant digits. This follows from the observation noted above and the symmetry 
of the cubic array. The asymptotic limits at low volume fractions for the case of 
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FIGURE 3. The instantaneous reduced viscosity (a) and the angular velocity (a) of a cubic array of 
prolate spheroids of aspect ratio of 2. Eighty elements were used to model the spheroid and 300 
elements were used to model the unit cell. Note that the instantaneous viscosities of cubic arrays 
of spheroids aligned in the x-direction and in the z-direction are about the same. Their angular 
velocities are different though, and they tend to the correct limits predicted by Jeffery's solution 
(1922). The maximum volume fraction in this case is &n. ., align in s-direction; + , align in y- 
direction ; o, align in z-direction. 

spheroids aligned in x- and z-direction are also included in figure 3 (a) for comparison. 
The numerical results are about 2% higher than the asymptotic results; this 
systematic error is due to the discretization errors. 

From figure 3 ( b ) ,  the spheroids aligned in the z-direction rotate with the fastest 
angular velocity (x  0.8?), those aligned in the x-direction rotate with the slowest 
angular velocity ( x  0.29), and those aligned in the y-direction rotate just like a 

10-2 
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sphere, with an angular velocity of about 0.w. The quoted angular velocities are also 
the asymptotic limits a t  low volume fractions (Jeffery 1922). The angular velocities 
of the spheroids are only weakly-dependent on the volume fraction. 

The results for oblate spheroids are summarized in figure 4. Here, one finds that 
the numerical results agree well with asymptotic results for the whole range of 
volume fraction considered. 

3.4. Cubic array of cubes 
We now consider a cubic array of cubes. A mesh refinement study shows that we need 
only a 48-element cube to obtain good averaged results up to a volume fraction of 
90 %. The instantaneous effective viscosity of a cubic array of cubes perfectly aligned 
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with the unit cell is plotted versus the volume fraction in figure 5. Instantaneous 
effective viscosities of spheroids are also plotted in the same figure for comparison. 

At  low volume fractions (@ c 0.4), the effective viscosity for an array of cubes is 
about the same as the effective viscosity for an array of spheres. In  fact, the angular 
velocity (Q,) of the cube, over the whole volume fraction considered, should be 
exactly 0.w as in the sphere case following from the symmetry arguments employed 
by Nunan & Keller (1984). The weak dependence of the averaged properties of 
suspensions on the shapes of the suspended particles, provided that the 'aspect ratio' 
of the particles is about one, has been noted before, for example, in the review by 
Metzner (1985). He showed that viscosity data on different suspensions of spheres, 
and rough crystals, can be correlated using a single empirical relation. At  high 
volume fractions, we expect the particle shape to have a more dramatic effect in the 
effective viscosity. For a cubic array of perfectly aligned cubes, the lubrication force 
between the surfaces of two generic cubes has two components ; one parallel to the 
surfaces and is proportional to a /h  (the shearing force due to the relative motion 
between the two surfaces), and the other perpendicular to the surfaces and is 
proportional to ( ~ / h ) ~  (the squeezing force between two parallel surfaces), where h is 
the distance between the two surfaces. The relative motion of the surfaces of the 
cubes is neither parallel nor perpendicular to the cubes' surfaces, but it involves both 
translational and rotational motion. Since the effective viscosity is directly related 
to the lubrication force, and 

we expect the effective viscosity to be proportional to P ,  where e = 1 - ( C D / @ ~ ~ ~ ) ; ,  
and n = 1 or 3 depending on whether the shearing or the squeezing action is 
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FIGURE 6. The instantaneous viscosity of a cubic array of perfectly aligned cubes at high volume 
fractions. The solid lines are the lines 7.9 x 10-6/es, for E < 0.01 (@ > 0.97), and 0.52/e, for 
0.01 < E < 0.3 (0.34 < @ < 0.97). 

dominant, respectively. A numerical confirmation of this is given in figure 6:  for 
E < 0.01 (@ > 0.97), the effective viscosity is given approximately by 7.9 x 10-6/e8. 
At moderate to high volume fractions, however, the effective viscosity is proportional 
to 1 / ~ ,  given by approximately 0.52/s .  

The singular nature of the effective viscosities of regular arrays is due to the fact 
that a snapshot in time is taken ; the lubrication force between the two surfaces of 
the two generic particles allows this singularity to develop. If a dynamic simulation 
is attempted, however, and a time average of the instantaneous effective viscosity is 
taken, then, as shown by Adler et al. (1985), this time-averaged effective viscosity 
remains finite a t  all concentrations. The asymptotic results a t  high volume fractions 
for periodic arrays therefore must have limited applicability. These results, however, 
are useful as a validation of the numerical method. 

We also perform some numerical experiments on cubic arrays of cubes by 
randomly assigning two Euler's angles to the suspended cubes and calculating the 
instantaneous effective viscosity of the suspension over the available range of volume 
fraction (which depends on the configuration of the cube). The results for nine 
different random configurations of the suspended cube are summarized in figure 7. It 
is interesting to note that the effective viscosity of a cubic array of perfectly aligned 
cubes is always lower than that of misaligned cubes. However, the instantaneous 
effective viscosity of a cubic array of spheres falls within the spread of the cube data. 
It would be more economical numerically to deal with a suspension of cubes, or other 
crystalline shapes (e.g. octahedra), since the number of elements needed is 
considerably smaller than that required to model a sphere, for the same accuracy. We 
note that the presence of sharp corners does not seem to cause any problem with the 
present numerical method at low to moderate volume fractions. At high volume 
fractions, where the corners or edges of one cube approach the face of another cube, 
the mobility function must approach zero, but this lubrication limit cannot be 
handled well with the present method. Our calculations stop well short of this limit. 
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FIQURE 7. The instantaneous viscosity of a cubic array of cubes. The cube is randomly oriented 
with respect to the unit cell. Calculations with 9 different random orientations were carried out. 
., cube at different orientations; +, cube aligned with the unit cell; 0, sphere. 

3.5. Cubic array of clusters of spheres 
The remainder of this paper is devoted to a few periodic arrays of clusters of two, 
three, four, and six spheres in a bulk shearing flow. Five cases are considered: 

Case a :  Cubic array of two spheres. The spheres’ centres are placed at  (+a,  0, 0), 
where a is the sphere radius. The unit cell for this case can be further reduced to a 
parallelepiped containing one single sphere. 

Case b :  Cubic array of two spheres. The spheres’ centres are placed a t  ( -a /v‘2,  
0, a / l / 2 )  and ( a / l / 2 , 0 ,  - a / 4 2 ) ,  respectively. 

Case c :  Cubic array of three spheres. The spheres centres are placed at  ( - a ,  +a, 
0) and (a ,  0 , O ) .  

Case d : Cubic array of four spheres. The spheres’ centres are placed at ( f a ,  k a, 
0). This case is similar to case a in that it is possible to reduce to unit cell to a 
parallelepiped containing just one single sphere. 

Case e :  Cubic array of six spheres. The spheres’ centres are placed at ( f a ,  +a, 0), 
and (0, 0, +a2/3). 

In all cases, the size of the unit cell is varied to cover the volume fraction of 
interest. The contours of velocities show that the flow mainly takes place in the xz- 
plane, with the y-component velocity of the order or less, in all cases. Since cases 
a and d are not much different from a cubic array of spheres, they are expected to, 
and indeed do, behave like a cubic array of spheres, as far as effective properties are 
concerned. All spheres are modelled with 80 surface elements, and the surface of the 
unit cell is modelled with 300 elements. 

The main results are summarized in figure 8, where the instantaneous effective 
viscosity is plotted against the volume fraction. It is apparent that case a and case 
d have about the same effective viscosities as the cubic array of spheres, all other 
cases have higher instantaneous effective viscosities. A plausible explanation of the 
observed higher viscosity is the immobilized liquid concept proposed by Vand (1948). 
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FIQURE 8. The instantaneous viscosity of cubic arrays of clusters of spheres. ., cubic array of 
spheres ; + , case a 2-sphere cluster ; V, case b 2-sphere cluster ; 0, case c 3-sphere cluster ; A, case 
d 4-sphere cluster; x , case e 6-sphere cluster. 

He proposed that in a cluster of particles, the liquid in the neighbourhood of the 
points of contact of the particles is effectively ‘immobilized ’. This immobilized liquid 
would then contribute to an effective volume fraction, djePP, which is greater than the 
actual volume fractions of the particles. Roscoe (1952) extended Vand’s concept of 
immobilized liquid and showed that if all the spheres are in clusters with four or more 
particles in a close-packed arrangement, then the effective volume fraction is = 
4,/4,max, where Gmax is the maximum volume fraction for the type of packing of the 
clusters. This semi-empirical relation seems to work quite well (Graham, Steele & 
Bird 1984). Another set of data that support the concept of immobilized liquid was 
reported by Lewis & Nielsen (1968), who agglomerated small glass beads into 
irregular aggregates of as many as 250 particles. These aggregates were formed by 
sintering, hence they were permanent. They found that the data can be well 
correlated, provided that the volume fraction is that  of the aggregated spheres plus 
the liquid imbibed in the interstices of the permanent aggregates. 

We find that, by using an effective volume fraction 4,efP x 1.5@. the instantaneous 
effective viscosities of the cases b ,  c, and e can be collapsed into it single curve. The 
front factor 1.5 would correspond to a body-centred cubic array for the cluster, 
according to  Roscoe (1952). This is a reasonable type of packing for the six-sphere 
cluster (case e), but it is clearly inappropriate for case b and case c. In the latter cases, 
one can enclose the two-sphere and the three-sphere clusters in an envelope and 
calculate the effective volume fraction assuming that the fluid trapped in the envelop 
is immobilized. This leads to an effective volume fraction of 1.250 for the two-sphere 
cluster, and 1.344, for the three-sphere cluster. These values are considerably lower 
than the value found numerically. Thus the immobilized fluid concept works for 
some types of packing, but i t  may be too over-simplified to bring out minor effects, 
which, however, may have large effects on the macroscopic properties. 

The rigid-body motion of the six spheres in the cluster is given in table 2 a t  0 = 
0.102. The four spheres lying the plane z = 0 spin about the y-axis with an angular 
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Sphere’s centre u, v, u, Qz Q, Q, 

(-a, -a, 0) -0.001 -0.001 -0.39 0.06 0.43 -0.0003 
(--a, -a, 0) 0.001 -0.002 0.39 -0.06 0.43 0.0008 
(--a, --a, 0) -0.005 -0.001 0.39 0.06 0.43 -0.003 
(-a, --a, 0) -0.006 0.00006 -0.39 -0.06 0.43 0.0001 
(0, 0, -~(1:3i)) -0.90 -0.002 -0.006 -0.001 0.68 -0.001 
(0, 0, -a(l+39) 0.90 -0.005 -0.007 0.0005 0.68 -0.002 

TABLE 2. Rigid-body motion of the spheres in the 6-sphere cluster, @ = 0.102. The results are 
rounded up to at most two significant figures. 

velocity of 0.431; and translate along the z-axis with velocities of k0.4~~1;. The upper 
and lower spheres spin about the y-axis with an angular velocity of about 0.71; and 
translate along the x-axis with velocities of kO.9. At the instant considered, the 
cluster therefore spins with an averaged angular velocity of about 0.4. Whether or 
not the cluster can be maintained at a later time can only be determined by a 
dynamic simulation, which is not within the scope of the present study. 

4. Concluding remarks 
A successful application of the standard boundary-element method to solve Stokes 

flows past a periodic array of force- and torque-free particles is demonstrated. Simple 
cubic arrays of spheres, spheroids, cubes, and clusters of spheres are subjected to a 
bulk simple shearing flow. The effective volume-averaged stress tensor as well as the 
detailed kinematics and stress field throughout the Newtonian suspending fluid are 
obtained by post-processing the boundary solution. For a cubic array of spheres, the 
boundary element results agree well with the numerical and asymptotic results of 
Nunan & Keller (1984) up to 95% of the close packing volume fraction, even for a 
very coarse meshing. New results for cubic arrays of spheroids of aspect ratio of two 
and cubes show that the effective properties are weakly dependent on the particle 
shape. This weak dependency has some experimental support in some suspensions 
(Metzner 1985) and falling-ball rheometry (Mondy et al. 1987). At high volume 
fractions, the effective viscosity of a cubic array of perfectly aligned cubes behaves 
like l/s3, where E = 1 - @/amax + 0. This singularity can be explained by lubrication 
forces between the two flat surfaces of the two cubes in the limit of high volume 
fractions. 

Some results for clusters of a small number of spheres are also reported, which 
partially support the ‘ immobilized ’ liquid concept proposed by Vand (1948). The 
effective volume fraction is found to be about 1.50, which is about the value 
proposed by Roscoe (1952), if the cluster is in a body-centred cubic packing. 

The limitation of the current boundary-element method is the treatment (or the 
lack) of near particle interaction, which leads to ill-conditioned problems a t  a high 
level of discretization. It is precisely the near particle interaction that is essential in 
a dynamic simulation of suspensions, where particles inevitably come into very near 
contact. The boundary element method, however, can be used to generate results for 
a small number of particles (of the order of loo), which can be used to validate 
approximate methods designed to handle a very large number of particles in a 
realistic suspension. 
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